Homogeneous code generation alternatives

SystemC
- Scheduling and data type support
- Generation of a simulatable implementation

SystemC-AMS
- Scheduling and data type support
- Support for continuous behaviors
- Generated code fully supports analog evolution

Sequential C++
- Simple semantics
- Approximates analog evolution
- Efficient execution and starting point of redesign flows

Parallel C++
- Support for parallel evolution of automata

Massively parallel C
- Support for parallel evolution
- Restrictions due to the architecture

Increasing complexity of embedded systems implies heterogeneity
- Different abstraction levels, digital/analog HW, embedded SW

Techniques for handling heterogeneity:
- **Top-down flows**
 - Model based design and formal models
 - Design flows with the definition of formal models
 - Restricted to certain application domains, heterogeneity is not handled
- **Bottom up flows**
 - Co-simulation connects frameworks and simulators specific to the different domains
 - No formal support, integration and validation is hard

Future work

UNIVERCM

Static techniques:
- Correct-by-construction manipulations:
 - RTL-to-TLM abstraction
 - Hardware-dependent Software generation
 - Model optimization
 - Formal verification
 - Based on Hybrid Automata Theory

Simulation based techniques for Cyber-Physical Systems:
- Functional requirements verification (e.g., dynamic Assertion Based Verification)
- Non-functional requirements estimation (e.g., power consumption)

Homogeneous code generation

Water tank system: Code and model generation results

A set of tools based on HIFSuite has been developed to generate both homogeneous code and high level models:
- Sequential C++
- SystemC
- SystemC-AMS
- SysML

Experimental results on a highly heterogeneous system, show advantages in producing homogeneous models:
- Faster simulation
- High level view of the system
- Easier integration of components
- Well defined integration of components

SysML model obtained starting from the water tank UNIVERCM specification: the structural description using a Block Diagram (top) and a Statechart Diagram representing the behavior of the valve component (bottom)

References

Take Home Message
Reducing Heterogeneity to Homogeneous models is the first step along the path to extend well known techniques for classical Embedded Systems to highly heterogeneous Cyber-Physical Systems. UNIVERCM features are perfectly suited to target this objective.